
N95- 19763

DAI-CLIPS: Distributed, Asynchronous,

Interacting CLIPS

Denis Gagn & Alain Garant

Groupe de Recherche en Intelligence Artificielle Distribude

Coll_ge militaire royal de Saint-Jean

Richelain, (Qudbec)

Canada, J0J 1R0

dgagne@cmr.ca

Abstract

DAI-CLIPS is a distributed computational environment within which each CLIPS is

an active independent computational entity with the ability to communicate freely with

other CLIPS. Furthermore, new CLIPS can be created, others can be deleted or modify

their expertise, all dynamically in an asynchronous and independent fashion during

execution. The participating CLIPS are distributed over a network of heterogeneous

processors taking full advantage of the available processing power. We present the

general framework encompassing DAI-CLIPS and discuss some of its advantages and

potential applications.

1 Introduction

Scenarios to be solved by Artificial Intelligence (AI) applications rapidly increase in com-

plexity. If we are to even allude to the enormously difl3cult endeavor that represents Artificial

Intelligence, very flexible, robust and powerful computational systems are going to be needed.

These programs, and the processing architecture supporting them, will have to be able to

cope with a very wide range o[dynamic external demands that are simply unpredictable.

Conditions vary greatly across tasks instances and constantly dictate different accom-

plishment strategies and usage of disparate sources of expertise. To be effective in such

situations, fusion must take place at many levels (information, expertise, processes,...).

Maximum degree of openness and flexibility is required of AI systems. Both hardware

architecture and software solutions must allow for scalable performance and scalable func-

tionalities. This, in return, will allow the matching of AI systems to the needs of the situation

as well as gaining access to the latest technological advances.

We believe that complex problems can best be solved via a pendemonium of smaller

agents. Each agent specializes in a different narrow aspect of cognition or field of knowledge

[Min85, Ten88]. Emphasis is thus placed on data and application parallelism.

plililglottli J°.,_G_ lli.Aillit I'tOi

345

FlaMED

The computational environment presented herein integrates the simplicity, elegance and

expressiveness of the ACTOR computational model [Hew73, Agh86] with the exceptional pro-

cessing power of heterogeneous distributed and parallel architectures IDes93]. Expressiveness

is increased by providing for disjunct or even disparate sources of expertise to cohabitate

rather than trying to integrate them. The interfacing or fusion required is achieved via

message passing enabling asynchronous exchange of knowledge (facts, rules) among agents.

Agents in the present context are effectively extended CLIPS. CLIPS is an expert system

tool that was developed by NASA at the Software Technology Branch of the Johnson Space

Center [Gia94].

DAI-CLIPS is a distributed computational environment within which each extended

CLIPS is an active independent computational entity with the ability to communicate freely

with other CLIPS. Furthermore, new CLIPS can be created, others can be deleted or modify

their expertise, all dynamically in a totally asynchronous and independent fashion during

execution.

The remainder of this text is structured as follows. Section :2 highlights the key charac-

teristic of the Actor computational model that influenced DAI-CLIPS and briefly describes

the system layer that constitutes the foundation of DAI-CLIPS. In section 3, we provide

a description of the conceptual framework offered by DAI-CLIPS by outlining its global

functionalities. In section 4, we provide some details about the architecture and available

functions. Section 5 brushes a quick picture of a few potential areas of research and devel-

opment that could benefit from such computational environment. Finally, sections 6 and 7

provides a discussion and our conclusions on the subject.

2 The Actor Model & CLAP

In this section we highlight some of the main characteristics of the Actor model that

influenced and characterizes DAI-CLIPS. We then present a brief description of CLAP

[Des93, Gag93, G_g94], a system layer based on the Actor Model, that constitute the

foundation of DAI-CLIPS.

2.1 The Actor Model

A detailed description of the Actor Model can be found in [Agh86, Hew77]. We will only

discuss here a few of the more salient characteristics of the model:

Distributed. The Actor model consists of numerous independent computational entities

(actors). The actors process information concurrently, which permits the overall system
• to handle the simultaneous arrival of information from different outside sources.

Asynchronous. New information may arrive at any time, requiring actors to operate

asynchronously. Also, actors can be physically separated where distance prohibits

them from acting synchronously. Each actor has a mailbox (buffer) where messages

can be stored while waiting to be processed.

Interactive. The Actor model is characterized by a continuous information exchange through

message passing, subject to unanticipated communication from the outside.

346

Thus, an actor is basically an active independentcomputational entity communicating
freely with other actors.

There areat least two different waysto look at the Actor model. Viewedas a system,it
is comprisedof two parts: the actorsand a systemlayer (operating/managementsystem).
From such a point of view the actors are the only availablecomputational entities. The
system layer is responsibleto manage,createand destroy actors as required or requested.
The system layer is alsoresponsiblefor ensuringmessagepassingamongactors.

Viewedasa computationalentity, anactoralsocomprisestwo parts: ascript, that defines
the behaviorsof the actor upon receiptof a message;and a finite set of acquaintanceswhich
are the other actorsknown to the actor.

2.2 CLAP

The above viewpoint duality is preserved in CLAP 1. CLAP is an implementation of an

extension of the actor model that can execute on a distributed heterogeneous network of

processors. The present version of CLAP can execute over a network of SUN SPARC worksta-

tions and Alex Informatique AVX parallel machines which are transputer based distributed

memory machines [Des93]. A port to HP and SGI workstations is in progress.

CLAP is an object-oriented programming environment that implements the following

concepts of the Actor model: the notion of actor, behaviors, mailbox, and parallelism at the

actor level. Further, CLAP offers the extension to the model of intra-actor parallelism.

Generally, CLAP applications will consist of many programs distributed over available

processors executing as a task under the control of the CLAP run time environment. In

CLAP, each actor is a member of a given task. It is up to the programmer to determine

how many actors there will be for any given task (although, a large number of actors in

a single task could mean the loss of potential parallelism in the application.) A scheduler

controls the execution of processes inside the tasks. Each task possesses a message server that

handles message reception for the actors in the task. Inter-processor message transmissions

are handled via RPC servers. XDR filters and type information are utilized for the encoding

and decoding of these messages. The CLAP environment is implemented in C++.

3 The Conceptual Framework

DAI-CLIPS is a distributed computational environment within which each CLIPS has been

extended to become an active independent computational entity with the ability to commu-

nicate freely with other extended CLIPS. Furthermore, new extended CLIPS can be created,

others can be deleted or modify their expertise, all dynamically in a totally asynchronous

and independent fashion during execution.

The desirata behind DAI-CLIPS is to produce a flexible development tool that captures

the essence of the "aggregate of micro agents" thesis supported by many in the study of

Computational Intelligence and Cybernetic [Hew73, Min85, Ten88]. The underlying thesis

being to have "micro agents", in our case complete CLIPS, specialized in different very

1C++ Library for Actor Programming.

347

narrow aspects of cognition or fields of knowledge 2. As they go about their tasks, these

micro-agents confer with each other and form coalitions producing collated, revised enhanced

views of the raw data they take in. These coalitions and their mechanism implement various

cognitive processes leading to the successful resolution of the problem.

3.1 D.A.I.

The three highlighted characteristics of the Actor model in the previous section, namely

distributed, asynchronous and interactive, are at the basis of the conceptual framework

for DAI-CLIPS. The augmented CLIPS participating in the environment are completely

encapsulated and independent allowing their distribution at both the software and hardware

level. Meaning that not only can the CLIPS execute in parallel but they can also be physically

distributed over the network of available processors. Our present version of DAI-CLIPS can

have participating CLIPS distributed over a network of SPARC workstations and/or the

nodes of a transputer based distributed memory parallel machine. The interaction among

the CLIPS is asynchronous (synchronicity can be imposed when required). The interchange

of knowledge between these extended CLIPS can involve exchanging facts, rules, and any

other CLIPS data object or functionality.

3.2 Cooperation

The DAI-CLIPS environment is conducive of cooperation among a set of independent CLIPS.

We regard as cooperation any exchange of knowledge among CLIPS whether productive or

not.

There is a priori no pre-defined notion of an organizational structure among the CLIPS

in DAI-CLIPS. Any desired type of organization (e.g. hierarchy, free market, assembly line,

task force, etc.) can be achieved by providing each CLIPS the appropriate knowledge of the

structure and the mechanism or protocol to achieve it.

The broad definition of cooperation and the inexistence of pre-defined organizational

structures in DAI-CLIPS were conscious initial choices. We wanted to maintain the highest

flexibility possible for the environment in this first incarnation. We are contemplating the

introduction of mechanisms to DAI-CLIPS to ease the elaboration of specific types of orga-

nizations based on the premise of groups or aggregates. The aim of these efforts is to capture

the recursive notion of agency.

3.3 Dynamic Creation

A powerful capability of DAI-CLIPS is the possibility of dynamically generating or destroying

participating:CLIPS at run time. The generation of new CLIPS can involve introducing a

new expertise or simply cloning an existing participant. When generating a new CLIPS, one

can specify which expertise the CLIPS is to possess by indicating the appropriate knowledge

base(s) to be loaded in the CLIPS at creation. This functionality has enormous potentials

that we have yet to completely explore.

2Expert Systems excel under these domain constraints.

348

4 The Architecture

The general framework encompassing DAI-CLIPS can be viewed as four layers: the hardware

layer, the system layer, the agent layer, and the application layer (see figl). The hardware

layer consists of a set of nodes (available processors) on the network (SPARCs and trans-

puters). The system layer (CLAP) is responsible to manage, create and destroy the processes

required or requested from the above agent layer as well as managing inter-agent communi-

cations. The agent layer provides a series of functionalities to implement various cognitive

processes via coalitions and organization mechanisms for a series of specialized micro-agents

(DAI-CLIPS). Finally, the application layer provides interfacing services and captures and

implements the user's conceptualization of the targeted domain. Such conceptualization

usually involves the universe of discourse or set of objects presumed in the domain, a set

of functions on the universe of discourse, and a set of relations on the universe of discourse

[Gen87].

Application Layer

Agent Layer

System Layer

Hardware Layer

Designer direct access I

Figure 1: The conceptual framework.

Within this general framework, an application designer can directly access and manipu-

late any of the four layers of the environment. This provides the designer with the flexibility

of manipulating objects at the level of abstraction he is more at ease with. For example,

a more advanced application designer could seek efficiency in his particular application by

manipulating objects all the way down to the system layer level, where someone else may be

quite content of the functionalities provided at the top layer.

4.1 Design

In the present version of the environment, each augmented CLIPS is associated with a CLAP

actor. These actors are loaded on different available processing nodes according to the load

of the nodes. To each augmented CLIPS is connected an interface which provides access to

the individual standard command loops of the CLIPS. An initial knowledge base is loaded

in each CLIPS (see fig2). Note that it is possible for two CLIPS to be uploaded with the

349

same initial knowledge base or for a CLIPS to upload a supplementary knowledge base at

run time.

Application

DAI.CLIPS

CLAP

Processors

Designer direct access
..

An interface @ A CUPS s A SPARC proceu_'

(_ A Knowledge Base O A CLAP Actor T A Transputer

Figure 2: Surrounding environment of DAI-CLIPS.

4.2 Implementation

In this section we enumerate some of the functions specific to DAI-CLIPS and describe their

respective use and functionality. The list is not exhaustive a, rather the intent here is to

present some of the main functions which can be used directly by the user.

create-agent

Purpose: Createsa named agentwithoutexpertise.

Synopsis: (create-agent <string-or-symbol-agent-name>)

Behavior: The agent <string-or-symbol-agent-name> is created.

destroy-agent

Purpose: Destroysa named agent.

Synopsis: (destroy-agent <str±ng-or-symbol-agent-name>)

Behavior: The agent<string-or-symbol-agent-name> isdestroyed.

send-fact-agent

Purpose: Asserts a run-time fact in a named agent.

Synopsis: (send-fact-agent <string-or-symbol-agent-name> <string>)

Behavior: The fact <string> is asserted in the agent < string-or-symbol-agent-name>

who then executes.

3Due to restricted space in this article.

350

send-deffact-agent

Purpose: Defines a persistent fact in a named agent.

Synopsis: (send-deffact-agent <string-or-symbol-agent-name>

< symbol-def f act -name>)

Behavior: The fact <symbol-deffact-name> is permanently asserted in the agent

< string-or-symbol-agent-name> who then executes.

send-defglobal-agent

Purpose: Defines a global variable in a named agent.

Synopsis: (send-defglobal-agent <string-or-symbol-agent-name>

< symbo 1- def gl obal-name >)

Behavior: The global variable <symbol-defglobal-name> is defined in the agent

<string-or-symbol-agent-name> who then executes.

send-defrule-agent

Purpose: Defines a rule in a named agent.

Synopsis: (send-defrule-agent <string-or-symbol-agent-name>

< symbol-def rul e-name >)

Behavior: The rule <symbol-defrule-name> is added in the expertise of agent

<string-or-symbol-agent-name> who then executes.

send-deftemplate-agent

Purpose: Defines a template in a named agent.

Synopsis: (send-deftemplate-agent <string-or-symbol-agent-name>

< symbo 1-deft emplat e-name >)

Behavior: The template <symbol-deftemplate-name> is added in the expertise of agent

< string-or-symbol-agent-name> who then executes.

load-for-agent

Purpose: Send a message to a named agent ordering him to load a specific expertise from a named

file.
Synopsis: (load-for-agent <string-or-symbol-agent-name> <file-name>)

Behavior: The agent <string-or-symbol-agent-name> possessesthe expertisespecifiedin

<file-name>.

5 Potential Areas of Applications

DAI-CLIPS provides an environment with a varying number of autonomous knowledge based

systems (expert-systems) that can exchange knowledge asynchronously. Such organiza-

tions of interconnected and independent computational systems are what Hewit calls Open

Systems 4 [Hew85]. We thus refer to DAI-CLIPS as an Open Knowledge Based Environment

or Open KBE for short. The potential areas of research and development that could benefit

from such a computational environment are considerable.

4The term "open system" being an overloaded term, we specifically refer to Hewit's definition of open

systems within the context of this article.

351

5.1 Distributed Artificial Intelligence

The first such area that comes to mind is that of Distributed Artificial Intelligence (DAI)

[Bon88, Gas89, Huh87]. The facilities available in DAI-CLIPS to support interaction between

"intelligent" agents make it a flexible tool for DAI applications and research. In comparison

with some existing DAI test beds, DAI-CLIPS: does not impose a specific control architecture

such as the blackboard in GBB [Cor86]; does not restrict agents to a specific set of operators

as in TRUCKWORLD; and is not a domain specific simulator as in PHOENIX[Han93]. The

most closely related work is SOCIAL CLIPS [Adl91]. The major difference with SOCIAL

CLIPS is DAI-CLIPS' dynamic creation and destruction of participating CLIPS at run time.

There are a priori no predefined domain of application for DAI-CLIPS. A designer is

free to specialize his agents in the domain of his/her choice. Further, the agents can be

heterogeneous in their speciality (expertise) within a single application. The only imposed

commonality in DAI-CLIPS is the use of the extended CLIPS shell. The added power

provided by the dynamic creation/destruction of agents within DAI-CLIPS is the source of

the potential area of application proposed in the next section.

5.2 Evolutionary Computing

The principle behind evolutionary computing is that of population control [Koz93]. That is

ensuring that the population is not allowed to grow indefinitely by selectively curtailing it.

This population control is carried out by creative and destructive processes guided by natural

selection principles. The destructive process examines the current generation (population)

and curtails it by destroying its weakest members (usually those with the lowest values from

some predefined fitness measure). The creative process introduces a new generation created

from the survivors of the destructive process. The expected result is that of a better fit or

optimum population.

Given DAI-CLIPS capability of dynamically creating and destroying participating CLIPS

at run-time, one can begin to explore the potential of coarse grain evolutionary computing.

That is, applying evolutionary computing principles to a population of "agents" or expert

systems in order to optain a population of expert systems that selectively better perform on

a global task in accordance with some selected fitness measure. The creative and destructive

processes could be carried out by two independent agents. One agent evaluating the agents

of the population and destroying those that do not perform as expected (destructive pro-

cess), another, either bringing together the expertise of two fit agents into a newly created

expert or simply cloning a fit agent (creative process). We will refer to this approach as a

disembodied 9enetic mechanism. Alternatively, the agents of a population could themselves

possess "genetic knowledge" that would lead to self-evaluation. Based on the knowledge of

its own fitness, an agent could then decide to terminate operations or to seek an appropriate

agent for procreation (via mutation, crossover, etc.). This embodied 9enetic mechanism could

take place based on some pre-determined evolution cycle. Note that both the embodied and

disembodied genetic mechanisms can take place continuously and in totally asynchronous

fashion.

352

6 Discussion

Open KBEs such as the one presented herein have considerable advantages:

they allow independent systems to cooperate in solving problems;

they allow disparate participant systems to share expertise;

they allow for the presence of incoherent information among participant systems, no

need for global consistency;

they provide for participant systems to work in parallel on common problems;

participant systems can be distributed physically to make ultimate use of the available

processing power;

asynchronous communication ensures very remote chances of deadlock;

fault tolerance is easy to implement via system redundancy;

• participant systems can be developed and implemented independently and modularly;

• participant system are reusable in other applications;

and many others.

By choice, DAI-CLIPS has one limitation with respect to Open KBE: the participant

systems are limited to CLIPS based systems. In fact, the general framework encompassing

DAI-CLIPS can easily be extended to allow heterogeneous applications (e.g. other ES shells,

Data Bases, Procedural applications) to participate through the use of a common formal

language for the interchange of knowledge among disparate computer programs such as

Knowledge Interface Format (KIF) and the use of a common message format and message-

handling protocol such as the Knowledge Query and Manipulation Language (KQML). The

use and adherance to these two upcoming standards from the DARPA Knowledge Sharing

Initiative can assure that any incompatibility in the paticipant systems' underlying models

for representing data, knowledge and commands can be ironed out to attain the desired

higher level of openness.

DAI-CLIPS and its encompassing environment will be the source of more research and

enhancements. We are presently putting the final touch to a second version of DAI-CLIPS

that implements the notion of multiple behaviors from the Actor model. That is, the capa-

bility of an agent to change its behavior in order to process the next message. Effectively,

a CLIPS shell will possess different expertise and will "context switch" to make use of the

appropriate knowledge to process the received message.

7 Conclusion

We introduced DAI-CLIPS, a distributed computational environment within which each

CLIPS is an active independent computational entity communicating freely with other

CLIPS. Open KBEs such as this one have many advantages, in particular, they allow for

353

scalable performance and scalable functionalities at both the hardware and the software

level. The potential applications of such environments are considerable, The unique power

of dynamic creation and destruction of DAI-CLIPS could lead to new forms of "intelligent"

evolutionary systems.

8 Acknowledgments

The authors would like to thank Jocelyn Desbiens and the members of the Centre de

Recherche en Informatique Distribute (CRID) for their constant support in the implementa-

tion of DAI-CLIPS. We also want to thank Alain Dubreuil and Andr_ Trudel for comments

on an earlier version of this article.

References

[Ad191] Adler, R., "Integrating CLIPS Applications into Heterogeneous Distributed Sys-

tems.", In Proceedings of the Second CLIPS Conference, NASA Conference Pub-

lication 10085, 1991.

[Agh86] Agha, G.A., Actors: A Model of Concurrent Computation in Distributed Sys-

tems, Cambridge, Massachusetts: MIT Press, 1986.

[Bon88] Bond, A. & Gasser, L. (Eds), Readings in Distributed Artificial Intelligence., Los

Altos, California: Morgan Kaufmann, 1988.

[Cor86] Corkill, D., Gallagher, K. & Murray, K.,"GBB: A Generic Blackboard Develop-

ment System." In Proceedings of AAAI-86, 1986.

[Des93] Desbiens, J., Toulouse, M. & Gagn_, D.,"CLAP: Une implantation du mod61e

Acteur sur r_seau h_t_rog_ne"., In Proceedings of the 1993 DND Workshop on

Knowledge Based Systems/Robotics. Ottawa, Ontario, 1993. (In French)

[Gag93] Gagn_, D., Nault, G., Garant, A. & Desbiens, J.,"Aurora: A Multi-Agent Proto-

type Modelling Crew Interpersonal Communication Network"., In Proceedings

of the 1993 DND Workshop on Knowledge Based Systems/Robotics. Ottawa,

Ontario, 1993.

[Gag94] Gagn_, D., Desbiens, J. & Nault, G.,"A Multi-Agent System Simulating Crew

Interaction in a Military Aircraft"., In Proceedings of the Second World Congress

on Expert Systems. Estoril, Portugal, 1994.

[Gas89] Gasser, L. & Huhns, M.N. (Eds), Distributed Artificial Intelligence: Volume II,

Los Altos, California: Morgan Kaufmann, 1989.

[Gen87] Genesereth, M. & Nilsson, N.,Logical Foundations of Artificial Intelligence.,

Morgan Kaufmann, 1987.

354

[Gia94]

[Han93]

[Hew73]

[Hew77]

[Hew85]

[Huh87]

[Koz93]

[Min85]

[Ten88]

Giarratano, J. & Riley, G.,Expert Systems: Principles and Programming., PWS

Publishing Company, 1994.

Hanks,S., Pollack, M. & Cohen, P.,"Benchmarks, Test Beds, Controlled Exper-

imentation and the Design of Agent Architectures.", In AI Magazine, Vol. 14,

No. 4, Winter 1993.

Hewit, C., Bishop, P. & Steiger, R., "A Universal Modular Actor Formalism for

Artificial Intelligence.", In Proceedings of the 3rd Joint Conference on Artificial

Intelligence (IJCAIT3)., Stanford, California, 1973.

Hewit, C., "Viewing Control Structures as Pattern of Passing Messages.", In

Journal of Artificial Intelligence., Vol 8, No. 3, 1977.

Hewit, C., "The Challenge of Open Systems.", BYTE Magazine, Vol. 10, No. 4,

April 1985.

Huhns, M.N. (Ed), Distributed Artificial Intelligence, Los Altos, California: Mor-

gan Kaufmann, 1987.

Koza, J.,Genetic Programming. , The MIT Press, 1993.

Minsky, M., The Society of the Mind., Simon and Schuster, New York, 1985.

Tenney, R. & Sandell, JR., "Strategies for Distributed Decisionmaking." In Bond

& Gasser (Eds) Readings in Distributed Artificial Intelligence., Los Altos, Cali-

fornia: Morgan Kaufmann, 1989.

355

